Space Station - Space Station นิยาย Space Station : Dek-D.com - Writer

    Space Station

    ผู้เข้าชมรวม

    129

    ผู้เข้าชมเดือนนี้

    1

    ผู้เข้าชมรวม


    129

    ความคิดเห็น


    0

    คนติดตาม


    0
    เรื่องสั้น
    อัปเดตล่าสุด :  7 มี.ค. 58 / 19:10 น.


    ข้อมูลเบื้องต้น
    หลังจากที่มนุษย์สามารถเอาชนะแรงโน้มถ่วงของโลก โดยการส่งยานอวกาศหรือดาวเทียมขึ้นไปสู่วงโคจรได้สำเร็จช่วงปลายปี พศ.2500 (คศ.1957) ด้วยดาวเทียมดวงแรกของสหภาพโซเวียต "สปุคนิค 1" หลังจากนั้นก็มีการส่งมนุษย์คนแรกขึ้นไปโคจรรอบโลก  และส่งมนุษย์คนแรกไปเหยียบดวงจันทร์ได้สำเร็จ ในเดือนกรกฏาคม พศ.2512 (คศ.1969) ด้วยยานอะพอลโล 11 ทำให้มนุษย์พยายามที่จะเอาชนะธรรมชาติอีกอย่างให้ได้โดยการขึ้นไปใช้ชีวิตอยู่ในอวกาศในสภาพไร้แรงโน้มถ่วงให้นานที่สุด  จึงต้องมีระบบช่วยชีวิตที่สมบูรณ์ ทั้งน้ำ อาหาร และ อากาศ  รวมทั้งระบบสันทนาการ เพื่อลดความเคลียดและปัญหาเรื่องสุขภาพ  ทำให้ยานอวกาศขนาดเล็กๆแบบเดิมไม่สามารถทำได้
         มนุษย์จึงมีแนวความคิดที่จะสร้างในรูปแบบของห้องหรือสถานี ที่มีระบบอำนวยความสะดวกต่างๆ และโคจรอยู่ในอวกาศรอบโลก จึงเป็นที่มาของแนวคิดในการสร้างสถานีอวกาศขึ้นมา       

    ตั้งค่าการอ่าน

    ค่าเริ่มต้น

    • เลื่อนอัตโนมัติ

       สถานีอวกาศนานาชาติ (International Space Station) หรือ ISS เป็นห้องปฏิบัติการลอยฟ้าซึ่งโคจรรอบโลกที่ระยะสูง 410 กิโลเมตร เคลื่อนที่ด้วยความเร็ว 27,744 กิโลเมตร/ชั่วโมง โคจรรอบโลก 1 รอบใช้เวลา 92 นาที สร้้างขึ้นด้วยความร่วมมือจาก 16 ประเทศ ได้แก่ สหรัฐอเมริกา รัสเซีย ญี่ปุ่น แคนาดา ฝรั่งเศส เยอรมัน อิตาลี เดนมาร์ก สวีเดน เบลเยียม เนเธอร์แลน์ สเปน อังกฤษ สวิสเซอร์แลนด์ นอร์เวย์ และบราซิล โดยมีวัตถุประสงค์เพื่อทำการค้นคว้าและทดลองทางวิทยาศาสตร์หลากหลายสาขาได้แก่ ดาราศาสตร์ อุตุนิยมวิทยา วัสดุศาสตร์ ชีววิทยา เคมี และฟิสิกส์ เนื่องจากสถานีอวกาศอยู่ในสภาพไร้แรงโน้มถ่วง นักวิทยาศาสตร์จึงสามารถทำการทดลองหรือประดิษฐ์ผลิตภัณฑ์ใหม่ๆ ซึ่งไม่สามารถกระทำบนพื้นผิวโลกได้  ดังนั้นสถานีอวกาศนานาชาติจึงมีความสำคัญต่ออนาคตของมนุษยชาติเป็นอย่างมาก

       

      วัตถุประสงค์แต่เดิมของสถานีอวกาศนานาชาติสร้างขึ้นเพื่อเป็นห้องทดลองและวิจัย เพื่อประโยชน์ที่นอกเหนือจากการใช้งานกระสวยอวกาศ เนื่องจากเป็นสถานที่ที่ใช้งานได้อย่างถาวรในสภาวะสุญญากาศ ทำให้สามารถทำการศึกษาค้นคว้าอย่างต่อเนื่องเป็นเวลานานได้ ทั้งทางด้านการทดลองที่เฉพาะเจาะจง รวมไปถึงการพำนักอาศัยของลูกเรือที่ต้องอยู่ปฏิบัติหน้าที่ การที่มีลูกเรืออยู่ประจำการอย่างถาวรทำให้สถานีอวกาศสามารถทำงานหลายอย่างที่กระสวยอวกาศแบบไม่มีคนควบคุมไม่อาจทำได้ เช่นสามารถเฝ้าดูการทดลองได้อย่างใกล้ชิด แต่งเติม ซ่อมแซม หรือเปลี่ยนแปลงใดๆ ได้ทันที คณะนักวิทยาศาสตร์ที่ทำงานบนพื้นโลกจึงสามารถเข้าถึงข้อมูลได้อย่างรวดเร็ว สามารถปรับเปลี่ยนรายละเอียดการทดลองหรือริเริ่มการทดลองแบบใหม่ได้ตามที่ต้องการ ซึ่งเป็นสิ่งที่ไม่สามารถทำได้หากใช้ยานอวกาศไม่มีคนบังคับซึ่งศึกษาเป็นพิเศษ

      คณะลูกเรือจะอยู่ปฏิบัติการบนสถานีอวกาศนานาชาติเป็นเวลาติดต่อกันหลายเดือน ทำการทดลองทางวิทยาศาสตร์ด้านต่าง ๆ ทุกวัน (ประมาณ 160 คน-ชั่วโมง ต่อหนึ่งสัปดาห์) รวมถึงการทดลองเกี่ยวกับชีววิทยามนุษย์ (ยาในอวกาศ) วิทยาศาสตร์ชีวภาพ ฟิสิกส์ และการสังเกตการณ์โลก เช่นกันกับการทดลองหลักการทางวิชาการและเทคโนโลยี จากผลสรุปการปฏิบัติงานนับแต่เริ่มการส่ง Zaryaในปี ค.ศ. 1998 จนถึงคณะลูกเรือ เอ็กซ์เพดิชั่น 15 ได้มีการทดลองทางวิทยาศาสตร์ที่สำคัญดำเนินไปทั้งสิ้น 138 หัวข้อการค้นพบทางวิทยาศาสตร์ที่สำคัญมากมาย ตั้งแต่วิทยาศาสตร์พื้นฐานไปจนถึงการวิจัยในสาขาใหม่ ได้รับการตีพิมพ์ออกมาเป็นประจำทุกเดือน

      สถานีอวกาศนานาชาติยังเป็นสถานที่ทดสอบระบบกระสวยอวกาศที่มีประสิทธิภาพและแม่นยำที่สุดเพื่อใช้ในปฏิบัติการระยะยาวสู่ดวงจันทร์และดาวอังคาร ทำให้สามารถประเมินเครื่องมือวัดต่างๆ ในตำแหน่งที่ปลอดภัยในวงโคจรต่ำของโลก ทำให้มีประสบการณ์ในการบำรุงรักษา ซ่อมแซม และเปลี่ยนระบบในวงโคจร ซึ่งจะมีความสำคัญอย่างยิ่งในการควบคุมกระสวยอวกาศจากโลกต่อไปในภายหน้า การทำการทดสอบนี้บนสถานีอวกาศนานาชาติทำให้ลดความเสี่ยงของปฏิบัติการลงได้อย่างมาก และยังเพิ่มความสามารถของกระสวยอวกาศที่จะใช้เดินทางระหว่างดาวเคราะห์ด้วย

      นอกเหนือจากวัตถุประสงค์ในการทดลองและวิจัยทางวิทยาศาสตร์แล้ว ยังมีความก้าวหน้าอีกมากมายในการศึกษาและในด้านความร่วมมือระหว่างประเทศ คณะลูกเรือของสถานีอวกาศนานาชาติได้มอบโอกาสแก่นักเรียนบนโลกให้ทำการศึกษาและพัฒนาการทดลอง ทดสอบและมีส่วนร่วมจากในห้องเรียน ให้สัมผัสกับการทดลองขององค์การนาซาและภารกิจด้านวิศวกรรมต่างๆ ของสถานีอวกาศ โครงการสถานีอวกาศนานาชาติยินยอมให้มีตัวแทนจาก 14 ประเทศขึ้นไปพำนักอาศัยและทำงานร่วมกันในอวกาศ เพื่อสร้างบทเรียนสำคัญที่สามารถนำไปสู่ภารกิจร่วมกันระหว่างนานาชาติในอนาคต

      การวิจัยทางวิทยาศาสตร์[แก้]

      ผู้บัญชาการ เอ็กซ์เพดิชั่น 8 และเจ้าหน้าที่วิทยาศาสตร์ ไมเคิล โฟล กำลังตรวจสอบตู้ทดลองแรงโน้มถ่วงต่ำแบบสวมถุงมือ

      ภาพเปรียบเทียบระหว่างไฟที่จุดบนโลก (ซ้าย) กับไฟที่จุดขึ้นบนสภาวะแรงโน้มถ่วงต่ำบน ISS (ขวา)

      เป้าหมายหนึ่งของสถานีอวกาศนานาชาติ คือการทำการทดลองที่จำเป็นต้องทำบนสถานีอวกาศภายใต้สภาวะผิดไปจากปกติ การวิจัยสาขาหลักได้แก่ ชีววิทยา (การวิจัยทางแพทย์และเทคโนโลยีทางชีววิทยา) ฟิสิกส์ (กลศาสตร์ของไหล วัสดุศาสตร์ และควอนตัมฟิสิกส์ดาราศาสตร์ (รวมถึงจักรวาลวิทยา) และอุตุนิยมวิทยา[10][11][12] รัฐบัญญัติการให้อำนาจองค์การนาซา ค.ศ. 2005 กำหนดให้สถานีอวกาศส่วนของสหรัฐเป็นห้องปฏิบัติการแห่งชาติของสหรัฐ ที่มีเป้าหมายเพื่อใช้ประโยชน์จากสถานีอวกาศโดยภาครัฐและเอกชน[31] ตั้งแต่ปี 2007 เป็นต้นมา มีการทดลองไม่กี่อย่างเท่านั้นที่ไม่เกี่ยวข้องกับการทดลองเกี่ยวกับผลกระทบจากสภาวะไร้น้ำหนักต่อร่างกายมนุษย์ อย่างไรก็ตาม ภายในปี 2010 จะมีโมดูลเกี่ยวกับการวิจัยขึ้นไปติดตั้งอีกสี่โมดูล คาดว่าจะมีการวิจัยที่ละเอียดมากกว่านี้

      การวิจัยบนสถานีอวกาศช่วยให้สามารถพัฒนาความรู้ความเข้าใจมากขึ้นเกี่ยวกับผลกระทบต่อร่างกายมนุษย์ที่อยู่ในอวกาศเป็นเวลานาน เช่น การเสื่อมของกล้ามเนื้อและกระดูก และศึกษาเกี่ยวกับของไหลในร่างกายมนุษย์ ซึ่งจะทำให้ได้ข้อมูลที่เป็นประโยชน์ต่อการตั้งถิ่นฐานในอวกาศและการเดินทางในอวกาศเป็นเวลานาน ข้อมูลจากการศึกษานับถึงปี 2006 บ่งชี้ว่าจะมีอันตรายใหญ่หลวงหากนักบินอวกาศลงจอดบนดาวเคราะห์หลังจากผ่านการเดินทางระหว่างดวงดาวเป็นระยะเวลานานๆ (เช่นระยะเวลาเดินทาง 6 เดือนที่ใช้เดินทางไปยังดาวอังคาร) มีการศึกษาทางการแพทย์ระดับสูงบนสถานีอวกาศนานาชาติผ่านสถาบันวิจัยชีวแพทย์ศาสตร์และอวกาศแห่งชาติ (National Space and Biomedical Research Institute หรือ NSBRI) หัวข้อที่สำคัญเช่น การวิเคราะห์อัลตราซาวน์ขั้นสูงในสภาวะแรงโน้มถ่วงต่ำ ซึ่งทำการตรวจสอบอัลตราซาวน์นักบินอวกาศโดยอาศัยคำแนะนำทางไกลจากผู้เชี่ยวชาญ การศึกษานี้มีวัตถุประสงค์เพื่อดูการวิเคราะห์โรคและการรักษาในเงื่อนไขการแพทย์ต่างๆ ในอวกาศ ปกติแล้วจะไม่มีแพทย์อยู่บนสถานีอวกาศนานาชาติ การวิเคราะห์เงื่อนไขทางการแพทย์จึงเป็นเรื่องท้าทาย และต้องคาดการณ์ล่วงหน้าไปก่อนว่าคำแนะนำทางไกลจากโลกสำหรับการอัลตราซาวน์ในกรณีฉุกเฉินรวมถึงการดูแลรักษาโดยแพทย์ผู้มีประสบการณ์อาจเป็นไปได้ยาก

      นักวิจัยยังทำการศึกษาผลกระทบจากสภาวะแวดล้อมที่เกือบจะไร้น้ำหนักบนสถานีอวกาศที่มีผลต่อการเจริญเติบโต การพัฒนา และกระบวนการภายในของพืชและสัตว์ ข้อมูลที่ได้นี้ นาซาต้องการนำไปใช้ศึกษาผลกระทบจากสภาวะเกือบไร้น้ำหนักที่มีต่อการเติบโตของเนื้อเยื่อสามมิติคล้ายเนื้อเยื่อมนุษย์ และผลึกโปรตีนรูปร่างประหลาดที่สามารถเกิดขึ้นได้ในอวกาศ

      นาซ่าศึกษาปัญหาฟิสิกส์เด่นๆ เช่น กลศาสตร์ของไหลในสภาพไร้น้ำหนักซึ่งยังไม่เป็นที่เข้าใจกันดีนัก เพื่อทำความเข้าใจกับรูปแบบพฤติกรรมของของไหลได้ดียิ่งขึ้น เนื่องจากของไหลสามารถรวมตัวกันได้เกือบสมบูรณ์ในภาวะแรงโน้มถ่วงต่ำ ขณะที่เมื่ออยู่บนโลกกลับไม่สามารถผสมกันได้ นอกจากนี้ นักวิทยาศาสตร์หวังจะได้รับข้อมูลใหม่ๆ เกี่ยวกับปฏิกิริยาของสสารที่เชื่องช้าลงจากผลของแรงโน้มถ่วงและอุณหภูมิที่ลดต่ำลง ซึ่งจะทำให้สามารถทำความเข้าใจเกี่ยวกับสารตัวนำยิ่งยวดได้ดียิ่งขึ้น

      การศึกษาด้านวัสดุศาสตร์ก็เป็นหัวข้อสำคัญหนึ่งบนสถานีอวกาศนานาชาติ โดยมีวัตถุประสงค์เพื่อหาประโยชน์ด้านเศรษฐกิจจากการพัฒนาเทคนิคที่ใช้กันอยู่บนโลกนอกจากนี้ นักวิจัยต่างก็หวังที่จะศึกษากระบวนการเผาไหม้ในสภาพที่แรงโน้มถ่วงน้อยกว่าบนโลก เพื่อค้นหาหนทางพัฒนาประสิทธิภาพการเผาไหม้ อันจะเกิดผลดีต่อเศรษฐกิจและสิ่งแวดล้อม นักวิทยาศาสตร์วางแผนที่จะใช้สถานีอวกาศเพื่อตรวจสอบละอองลอย โอโซน ไอน้ำ และออกไซด์ในชั้นบรรยากาศของโลก และรังสีคอสมิก ฝุ่นอวกาศ ปฏิสสาร และสสารมืดในจักรวาล

      ดูบทความหลักที่: โครงการกระสวยอวกาศ-เมียร์

      กระสวยอวกาศแอตแลนติสเข้าเทียบท่าเมียร์ ในเที่ยวบิน STS-81 ระหว่างโครงการกระสวยอวกาศ-เมียร์

      สถานีอวกาศนานาชาติเริ่มต้นโครงการมาตั้งแต่ยุคสงครามเย็น โดยเป็นโครงการที่ทำงานร่วมกันระหว่างสถานีอวกาศจากประเทศต่างๆ หลายประเทศ ช่วงต้นคริสต์ทศวรรษ 1980 องค์การนาซาวางแผนการส่งโมดูลสถานีอวกาศชื่อว่า สถานีอวกาศฟรีดอม ซึ่งเป็นเหมือนสำเนาของสถานีอวกาศซัลยุตและสถานีอวกาศเมียร์ของรัสเซีย ขณะที่ทางฝั่งโซเวียตได้เตรียมการสร้าง เมียร์-2 ในช่วงทศวรรษ 1990 เพื่อนำขึ้นไปใช้แทนที่ เมียร์ อย่างไรก็ดี ด้วยปัญหาทางด้านงบประมาณและข้อจำกัดในการออกแบบ ฟรีดอม จึงไม่มีความคืบหน้าใดๆ หลังจากสร้างแบบจำลองและการทดสอบอุปกรณ์ย่อย

      การล่มสลายของสหภาพโซเวียตปิดฉากสงครามเย็นและการแข่งขันกันทางอวกาศ โครงการ ฟรีดอม กำลังจะถูกรัฐสภาของสหรัฐอเมริกาสั่งยกเลิก นอกจากนี้ความวุ่นวายทางเศรษฐกิจของประเทศรัสเซียยุคหลังโซเวียตก็ทำให้โครงการ เมียร์-2 ล้มเลิกไปด้วย ประเทศอื่นๆ ก็ประสบปัญหาทางด้านงบประมาณสำหรับสถานีอวกาศเช่นเดียวกัน ทำให้รัฐบาลสหรัฐฯ เริ่มการเจรจากับหุ้นส่วนอื่นในยุโรป รัสเซีย ญี่ปุ่น และแคนาดา ในช่วงต้นคริสต์ทศวรรษ 1990 เพื่อเริ่มโครงการสถานีอวกาศที่เป็นความร่วมมือระหว่างนานาชาติ

      เดือนมิถุนายน ค.ศ. 1992 จอร์จ เอช. ดับเบิลยู. บุช ประธานาธิบดีสหรัฐอเมริกา กับบอริส เยลซิน ประธานาธิบดีรัสเซีย ได้ตกลงร่วมกันในโครงการสำรวจอวกาศ โดยลงนามใน ข้อตกลงระหว่างสหรัฐอเมริกากับสหพันธรัฐรัสเซียว่าด้วยการร่วมมือในการสำรวจและใช้สอยอวกาศภายนอกเพื่อสันติภาพ ข้อตกลงนี้เริ่มต้นด้วยโครงการร่วมมือเล็กๆ โดยที่นักบินอวกาศชาวอเมริกัน 1 คนจะขึ้นสู่สถานีอวกาศรัสเซีย และนักบินอวกาศรัสเซีย 2 คนจะขึ้นสู่สถานีอวกาศของสหรัฐฯ

      เดือนกันยายน ค.ศ. 1993 อัล กอร์ รองประธานาธิบดีสหรัฐอเมริกา กับ วิคตอร์ เชอร์โนเมียร์ดิน นายกรัฐมนตรีรัสเซีย ได้ประกาศแผนการสำหรับสถานีอวกาศแห่งใหม่ ซึ่งในเวลาต่อมากลายเป็นสถานีอวกาศนานาชาติและเพื่อเป็นการเตรียมการโครงการใหม่นี้ ทั้งสองได้ตกลงกันว่า สหรัฐอเมริกาจะเข้าช่วยเหลือในโครงการ เมียร์ อย่างใกล้ชิดในเวลาหลายปีข้างหน้า โดยถือเป็นส่วนหนึ่งของข้อตกลงซึ่งต่อมานับรวมเอายานในวงโคจรที่เชื่อมต่อกับเมียร์ด้วย

      โครงการสถานีอวกาศนานาชาติได้วางแผนที่จะเชื่อมต่อสถานีอวกาศขององค์การอวกาศที่เข้าร่วมเอาไว้ด้วยกัน ซึ่งรวมไปถึง ฟรีดอมเมียร์-2 (พร้อม DOS-8 ที่ภายหลังกลายเป็นซเวซดา), โคลัมบัส ขององค์การอวกาศยุโรป และห้องทดลอง คิโบ ขององค์การสำรวจอวกาศญี่ปุ่น โมดูลแรกของโครงการคือ ซาร์ยา ถูกส่งขึ้นเมื่อปี ค.ศ. 1998 และคาดหมายว่าสถานีอวกาศจะเสร็จสมบูรณ์ภายในปี ค.ศ. 2003 อย่างไรก็ดี ความล่าช้าต่างๆ ทำให้แผนประมาณการเสร็จสมบูรณ์ของโครงการต้องเลื่อนออกไปเป็นปี ค.ศ. 2011

      การประกอบโครงสถานีอวกาศนานาชาติเป็นความท้าทายด้านวิศวกรรมอากาศยานอย่างยิ่งครั้งหนึ่ง โครงการนี้เริ่มต้นในเดือนพฤศจิกายน ค.ศ. 1998 นับถึงเดือนพฤษภาคม ค.ศ. 2009 การประกอบสถานีอวกาศคืบหน้าไปแล้ว 82.8%.

      ชิ้นส่วนแรกของสถานีอวกาศนานาชาติ คือ ซาร์ยา นำขึ้นสู่วงโคจรเมื่อวันที่ 20 พฤศจิกายน ค.ศ. 1998 โดยจรวดโปรตอนของรัสเซีย หลังจากนั้นสองสัปดาห์จึงติดตามมาด้วยโหนดโมดูล 3 ชุด คือ ยูนิตี้ นำขึ้นสู่อวกาศโดยเที่ยวบิน STS-88 ชิ้นส่วนทั้งสองนี้ถูกทิ้งไว้ปราศจากผู้ควบคุมเป็นเวลากว่าหนึ่งปีครึ่ง จนกระทั่ง ซเวซดา โมดูลของรัสเซียถูกนำขึ้นไปประกอบเพิ่มเติมในเดือนกรกฎาคม ค.ศ. 2000 ทำให้สถานีอวกาศนานาชาติสามารถรองรับลูกเรือได้สูงสุดคราวละ 3 คนอย่างต่อเนื่อง คณะลูกเรือถาวรชุดแรกคือ เอ็กซ์เพดิชั่น 1 เดินทางไปถึงสถานีอวกาศนานาชาติในเดือนพฤศจิกายน ค.ศ. 2000 โดยนำชิ้นส่วน 2 ชิ้นไปประกอบในโครงค้ำหลัก (Integrated Truss Structure) คือโครงส่วนประกอบ Z1 และ P6 ทั้งสองส่วนนี้เป็นตัวตั้งต้นให้สถานีอวกาศสามารถทำการสื่อสาร การนำทาง เป็นระบบดินให้ระบบไฟฟ้า (สำหรับ Z1) และเป็นแหล่งพลังงานเริ่มต้นที่ได้จากแผงรับแสงอาทิตย์ที่ติดตั้งบน P6[40]

      ช่วงสองปีถัดมา มีการขยายสถานีอวกาศโดยส่วนประกอบเทียบท่าเพียร์ส นำส่งโดยจรวด โซยูซ-ยู พร้อมกันนั้น ห้องทดลอง เดสทินี กับ ห้องกักอากาศ เควสต์ ก็นำขึ้นประกอบโดยกระสวยอวกาศแอตแลนติสและกระสวยอวกาศเอนเดฟเวอร์ สถานีอวกาศยังติดตั้งแขนกลหลัก Canadarm2 และชิ้นส่วนต่างๆ อีกหลายชิ้นเข้ากับโครงค้ำหลักของสถานี

      แผนการต่อขยายสถานีอวกาศต้องหยุดชะงักไปหลังจากเกิดอุบัติเหตุกับกระสวยอวกาศโคลัมเบียในปี ค.ศ. 2003 การก่อสร้างต้องหยุดชะงักไปพร้อมกับการระงับโครงการกระสวยอวกาศ จนกระทั่งกระสวยอวกาศดิสคัฟเวอรี่ เที่ยวบิน STS-114 ขึ้นบินอีกครั้งในปี ค.ศ. 2005

      การประกอบสถานีเริ่มคืบหน้าอย่างเป็นทางการจากการนำส่งแผงรับแสงอาทิตย์ชุดที่สองของสถานีอวกาศที่นำส่งโดยกระสวยอวกาศแอตแลนติส เที่ยวบิน STS-115 หลังจากนั้นได้มีการติดตั้งโครงสร้างประกอบเพิ่มเติมจำนวนมาก รวมถึงแผงรับแสงอาทิตย์ชุดที่สาม นำส่งขึ้นโดยเที่ยวบิน STS-116 STS-117 และ STS-118 ซึ่งเป็นการเพิ่มขีดความสามารถในการผลิตกระแสไฟฟ้าของสถานี ทำให้สามารถติดตั้งโมดูลอัดอากาศเพิ่มเติมได้ มีการติดตั้งโหนดฮาร์โมนีและห้องทดลองโคลัมบัสของทางยุโรปหลังจากนั้น ตามด้วยอุปกรณ์สองชุดแรกของโมดูลคิโบของญี่ปุ่น เดือนมีนาคม ค.ศ. 2009 เที่ยวบินที่ STS-119 นำส่งอุปกรณ์ติดตั้งโครงค้ำหลักชุดสุดท้ายเสร็จสมบูรณ์รวมถึงการติดตั้งแผงรับแสงอาทิตย์ชุดที่สี่ซึ่งเป็นชุดสุดท้าย เดือนกรกฎาคม ค.ศ. 2009 กระสวยอวกาศเอนเดฟเวอร์เที่ยวบิน STS-127 นำส่งอุปกรณ์ชุดสุดท้ายของโมดูลคิโบขึ้นติดตั้ง[40]

      นับถึงเดือนกุมภาพันธ์ ค.ศ. 2010 สถานีอวกาศนานาชาติได้ติดตั้งโมดูลอัดอากาศทั้งสิ้น 13 โมดูล โครงค้ำหลักติดตั้งเสร็จสมบูรณ์ กำลังรอโมดูลอัดอากาศเอนกประสงค์ ลีโอนาร์โด, แขนกลของยุโรป, โมดูลของทางรัสเซียอีก 2 โมดูล และชิ้นส่วนภายนอกอีกจำนวนหนึ่งรวมถึง Alpha Magnetic Spectrometer (AMS-02) ซึ่งคาดว่าจะติดตั้งแล้วเสร็จทั้งหมดภายในปี ค.ศ. 2011 สถานีอวกาศนานาชาติจะมีมวลรวมทั้งสิ้นมากกว่า 400 เมตริกตัน[2][39]

      โมดูลที่ได้รับการปรับความดัน[แก้]

      สถานีอวกาศนานาชาติยังอยู่ในระหว่างการก่อสร้าง เมื่อสร้างเสร็จแล้วมันจะประกอบด้วยโมดูลที่ได้รับการปรับความดันทั้งหมด 16 โมดูล มีปริมาตรรวมทั้งหมดประมาณ 1,000 ลูกบาศก์เมตร โมดูลเหล่านี้ประกอบด้วยห้องทดลอง ส่วนเชื่อมต่อ โหนด และส่วนอยู่อาศัย ตอนนี้มีโมดูล 9 โมดูลอยู่ในวงโคจรแล้ว อีก 5 โมดูลยังคงรอการส่งขึ้นมา โมดูลแต่ละโมดูลจะถูกขนขึ้นมาด้วยกระสวยอวกาศ จรวดโปรตอน และจรวดโซยูซ[40] ดังตารางข้างล่างนี้

      โมดูล

      เที่ยวบิน

      วันที่ปล่อย

      ยานขนส่ง

      วันที่เชื่อมต่อ

      ประเทศ

      มุมมองแบบแยกชิ้น

       

      ซาร์ยา

      1A/R

      20 พฤศจิกายน ค.ศ. 1998

      จรวดโปรตอน-เค

      -

      รัสเซีย (ผู้สร้าง)
      สหรัฐฯ (เงินทุน)

      [42]

      เป็นชิ้นส่วนแรกสุดของสถานีอวกาศนานาชาติที่นำส่งขึ้น ทำหน้าที่ผลิตและจัดเก็บกระแสไฟฟ้า ขับเคลื่อน และนำทางการประกอบในช่วงต้น ปัจจุบันทำหน้าที่เป็นโมดูลสำหรับเก็บของทั้งด้านในโมดูลและถังน้ำมันด้านนอก

      ยูนิตี (โหนด 1)

      2A

      4 ธันวาคม ค.ศ. 1998

      กระสวยอวกาศเอนเดฟเวอร์STS-88

      7 ธันวาคม ค.ศ. 1998

      สหรัฐฯ

      [43]

      เป็นโหนดโมดูลชุดแรก ทำหน้าที่เชื่อมต่อส่วนของสหรัฐอเมริกาบนสถานีเข้ากับส่วนของรัสเซีย (โดยผ่านตัวแปลงปรับความดัน PMA-1) และเป็นจุดเทียบท่าสำหรับโครงค้ำ Z1, ส่วนแอร์ล็อก เควสต์, ห้องทดลอง เดสทินี และโหนด Tranquillity

      ซเวซดา (โมดูลบริการ)

      1R

      12 กรกฎาคม ค.ศ. 2000

      จรวดโปรตอน-เค

      26 กรกฎาคม ค.ศ. 2000

      รัสเซีย

      [44]

      เป็นโมดูลบริการของสถานี โดยเป็นพื้นที่ใช้สอยหลักสำหรับที่พักของบรรดาลูกเรือ ระบบจัดการสิ่งแวดล้อม และการควบคุมทิศทางกับวงโคจร โมดูลยังทำหน้าที่เป็นจุดเทียบท่าสำหรับยานโซยูซ ยานโพรเกรสและ ยานขนส่งอัตโนมัติ

      เดสทินี (ห้องทดลองสหรัฐฯ)

      5A

      7 กุมภาพันธ์ ค.ศ. 2001

      กระสวยอวกาศแอตแลนติสSTS-98

      10 กุมภาพันธ์ ค.ศ. 2001

      สหรัฐฯ

      [45]

      เป็นส่วนงานวิจัยพื้นฐานของสหรัฐอเมริกาที่ติดตั้งบนสถานี ใช้สำหรับการทดลองโดยทั่วไป ภายในมีชั้นมาตรฐานอยู่ 24 ชั้น บางส่วนใช้สำหรับระบบสิ่งแวดล้อมและเครื่องมือเครื่องใช้ประจำวันของลูกเรือ มีหน้าต่างขนาด 51 ซม. ซึ่งเป็นหน้าต่างบานใหญ่ที่สุดเท่าที่เคยมีใช้ในอวกาศ เดสทินียังเป็นจุดเชื่อมต่อสำหรับโครงค้ำหลักส่วนใหญ่ของสถานีอวกาศด้วย

      เควสต์ (จุดเชื่อมต่อแอร์ล็อก)

      7A

      12 กรกฎาคม ค.ศ. 2001

      กระสวยอวกาศแอตแลนติสSTS-104

      14 กรกฎาคม ค.ศ. 2001

      สหรัฐฯ

      [46]

      เป็นจุดเชื่อมต่อกักอากาศพื้นฐานสำหรับสถานีอวกาศ สำหรับการออกเดินในอวกาศของทั้งฝั่งสหรัฐอเมริกาและรัสเซีย ประกอบด้วย 2 ส่วนหลักคือ ส่วนล็อกอุปกรณ์ บรรจุชุดอวกาศและเครื่องมือ กับส่วนล็อกลูกเรือ ซึ่งเป็นจุดที่นักบินอวกาศจะออกเดินไปในอวกาศ

      เพียร์ส (ส่วนประกอบเทียบท่า)

      4R

      14 กันยายน ค.ศ. 2001

      จรวดโซยูซ-ยูProgress M-SO1

      16 กันยายน ค.ศ. 2001

      รัสเซีย

      [47]

      เป็นท่าเชื่อมต่อเพิ่มเติมสำหรับยานอวกาศโซยูซและโพรเกรส ทั้งยังสามารถเป็นทางเข้าและทางออกให้แก่นักเดินอวกาศจากทางรัสเซีย นอกเหนือไปจากเป็นที่เก็บชุดอวกาศ

      ฮาร์โมนี (โหนด 2)

      10A

      23 ตุลาคม ค.ศ. 2007

      กระสวยอวกาศดิสคัฟเวอรีSTS-120

      14 พฤศจิกายน ค.ศ. 2007

      ยุโรป (ผู้สร้าง)
      สหรัฐฯ (เงินทุน)

      [48]

      เป็นโมดูลโหนดที่ 2 ของสถานี ทำหน้าที่เป็นศูนย์กลางระบบอรรถประโยชน์ของสถานีอวกาศนานาชาติ ประกอบด้วยแร็ก 4 ชิ้นสำหรับเชื่อมต่อพลังงานไฟฟ้า ข้อมูลอิเล็กทรอนิกส์ และเป็นจุดเชื่อมต่อกลางสำหรับส่วนประกอบอื่นๆ ผ่านทาง Common Berthing Mechanism (CBM) ทั้ง 6 ชุด ห้องทดลองโคลัมบัสของยุโรป และคีโบของญี่ปุ่นเชื่อมต่อกับโมดูลนี้อย่างถาวร และมีท่าเชื่อมต่อในวงโคจรสำหรับกระสวยอวกาศสหรัฐติดตั้งบนท่าด้านนอกของ ฮาร์โมนี ผ่านทาง PMA-2 นอกจากนี้โมดูลยังทำหน้าที่เป็นท่าเทียบสำหรับเที่ยวบินขนส่งสิ่งของและเสบียงอีกด้วย

      โคลัมบัส (ห้องทดลองยุโรป)

      1E

      7 กุมภาพันธ์ ค.ศ. 2008[49]

      กระสวยอวกาศแอตแลนติสSTS-122

      11 กุมภาพันธ์ ค.ศ. 2008

      ยุโรป

      [50][51]

      เป็นส่วนงานวิจัยพื้นฐานสำหรับทางยุโรป ประกอบด้วยห้องทดลองพื้นฐานและเครื่องอำนวยความสะดวกอื่นๆ ที่ออกแบบมาสำหรับการทดลองด้านชีววิทยา งานวิจัยชีวแพทยศาสตร์ และฟิสิกส์ของไหล มีจุดเชื่อมต่อหลายแห่งติดตั้งอยู่ด้านนอกของโมดูลสำหรับการรับพลังงานและเชื่อมต่อข้อมูลกับห้องทดลองอื่นๆ มีแผนการที่จะขยายตัวโมดูลออกไปอีกเพื่อการศึกษาฟิสิกส์ควอนตัมและจักรวาลวิทยา

      โมดูล คีโบ ส่วนขนส่ง (JEM-ELM)

      1J/A

      11 มีนาคม ค.ศ. 2008

      กระสวยอวกาศเอนเดฟเวอร์STS-123

      12 มีนาคม ค.ศ. 2008

      ญี่ปุ่น

      [52]

      เป็นส่วนหนึ่งของโมดูลห้องทดลอง คีโบ ของญี่ปุ่น ทำหน้าที่ในการจัดเก็บและอำนวยการขนส่งสิ่งของต่างๆ มายังห้องทดลองโดยผ่านส่วนปรับความดันที่รองรับการขนถ่ายภายใน

      โมดูล คีโบ ส่วนปรับความดัน(JEM-PM)

      1J

      31 พฤษภาคม ค.ศ. 2008

      กระสวยอวกาศดิสคัฟเวอรีSTS-124

      -

      ญี่ปุ่น

      [52][53]

      เป็นส่วนหนึ่งของโมดูลห้องทดลอง คีโบ ของญี่ปุ่น โดยทำหน้าที่เป็นแกนหลักของคีโบ ซึ่งส่วน ELM และเครื่องอำนวยความสะดวกภายนอกอื่นๆ จะต้องมาเชื่อมต่อ ห้องทดลองนี้เป็นโมดูลสถานีอวกาศนานาชาติที่ใหญ่ที่สุด ประกอบด้วยแร็ก 23 ชิ้น ซึ่งรวมถึงแร็กการทดลอง 10 ชิ้น โมดูลใช้ในการทดลองเกี่ยวกับการแพทย์ในอวกาศ ชีววิทยา การสังเกตการณ์โลก การผลิตวัสดุ ไบโอเทคโนโลยี และงานวิจัยด้านการสื่อสาร นอกจากนี้ยังทำหน้าที่เป็นท่าเทียบสำหรับแพล็ตฟอร์มภายนอกอื่นๆ เพื่อให้สามารถขนถ่ายสิ่งของได้โดยตรงในสภาวะแวดล้อมในอวกาศโดยอาศัยแขนกล JEM-RMS ซึ่งติดตั้งอยู่กับโมดูล PM นี้

      Poisk (Mini-Research Module 2)

      5R

      10 พฤศจิกายน ค.ศ. 2009

      จรวดโซยูซ-ยูProgress M-MRM2

      -

      รัสเซีย

      [54][55]

      เป็นส่วนประกอบสถานีอวกาศนานาชาติส่วนหนึ่งของรัสเซีย ใช้สำหรับการเทียบท่ายานโซยูซและยานโพรเกรส โดยเป็นห้องกักอากาศสำหรับการเดินอวกาศและเป็นส่วนเชื่อมต่อกับการทดลองวิทยาศาสตร์ด้วย

      Tranquillity
      (Node 3)

      20A

      8 กุมภาพันธ์ ค.ศ. 2010

      กระสวยอวกาศเอนเดฟเวอร์STS-130

      -

      ยุโรป (ผู้สร้าง)
      สหรัฐฯ (เงินทุน)

      [56][57]

      เป็นโหนดของสหรัฐฯ หน่วยที่ 3 และหน่วยสุดท้าย บรรจุระบบสนับสนุนการดำรงชีพที่ก้าวหน้าอย่างยิ่ง เพื่อทำหน้าที่รีไซเคิลน้ำเสียจากการใช้งานของลูกเรือ และสร้างออกซิเจนให้กับลูกเรือ โหนดนี้มีจุดเชื่อมต่อ 4 จุดเพื่อเชื่อมกับโมดูลปรับความดันหรือยานขนส่งลูกเรืออื่นๆ นอกเหนือไปจากการเป็นจุดเชื่อมต่อถาวรสำหรับโมดูลคูโปลา

      คูโปลา

      20A

      8 กุมภาพันธ์ ค.ศ. 2010

      กระสวยอวกาศเอนเดฟเวอร์STS-130

      -

      ยุโรป (ผู้สร้าง)
      สหรัฐฯ (เงินทุน)

      [58]

      เป็นโมดูลสังเกตการณ์เพื่อให้ลูกเรือของสถานีอวกาศนานาชาติสามารถเฝ้าดูการปฏิบัติการของหุ่นยนต์และการเทียบท่ายานอวกาศได้โดยตรง รวมไปถึงเป็นจุดเฝ้าดูโลกด้วย โมดูลติดตั้งสถานีปฏิบัติการหุ่นยนต์สำหรับควบคุมการทำงานของ Canadarm2 และมีม่านเปิดปิดเพื่อป้องกันกระจกหน้าต่างจากการถูกอุกกาบาตขนาดเล็กปะทะทำให้เสียหาย

      Rassvet
      Mini-Research Module 1

      ULF4

      14 พฤษภาคม ค.ศ. 2010

      กระสวยอวกาศแอตแลนติสSTS-132

      -

      รัสเซีย

      [39]

      Rassvet ถูกใช้งานสำหรับการเชื่อมต่อกับยานอวกาศและใช้เป็นที่เก็บเสบียงบนสถานี

      Leonardo(Permanent Multipurpose Module)

      ULF5

      24 กุมภาพันธ์ ค.ศ. 2011

      กระสวยอวกาศดิสคัฟเวอรีSTS-133

      -

      ยุโรป (ผู้สร้าง), สหรัฐฯ (ผู้ดำเนินการ)

      [59][60][61]

      Rassvet ถูกใช้งานสำหรับการเชื่อมต่อกับยานอวกาศและใช้เป็นที่เก็บเสบียงบนสถานี

      กำหนดการปล่อยในอนาคต[แก้]

      โมดูล

      เที่ยวบิน

      วันที่ปล่อย

      ยานขนส่ง

      วันที่เชื่อมต่อ

      ประเทศ

      มุมมองแบบแยกชิ้น

       

      Multipurpose Laboratory Module

      3R

      ประมาณ ค.ศ. 2012[39]

      จรวดโปรตอน-เอ็ม

      -

      รัสเซีย

      [39][62]

      ยังไม่ได้ปล่อย

      ยานต้นแบบ X-38 lifting body ยานนำลูกเรือกลับของสถานีอวกาศนานาชาติซึ่งถูกยกเลิกไป

      มีโมดูลหลายชุดที่วางแผนเอาไว้สำหรับสถานี แต่ถูกยกเลิกไประหว่างที่ดำเนินโครงการสถานีอวกาศนานาชาติ ทั้งด้วยเหตุผลด้านงบประมาณ ด้วยเหตุว่าโมดูลเหล่านั้นไม่จำเป็นต้องใช้แล้ว หรือเป็นผลจากการปรับเปลี่ยนการออกแบบใหม่ของสถานีหลังจากเกิดโศกนาฏกรรมกระสวยอวกาศโคลัมเบียเมื่อปี ค.ศ. 2003 โมดูลที่ยกเลิกไปได้แก่

      ·         Centrifuge Accommodations Module ของสหรัฐอเมริกา ใช้สำหรับการทดลองในแรงโน้มถ่วงจำลองหลายระดับที่แตกต่างกัน[63]

      ·         Habitation Module ของสหรัฐอเมริกา ใช้สำหรับเป็นศูนย์กลางการพำนักอาศัยบนสถานี ปัจจุบันมีสถานีสำหรับการนอนกระจายอยู่ทั่วไปในสถานี[64]

      ·         Crew Return Vehicle ของสหรัฐอเมริกา สำหรับเป็นเรือชูชีพของสถานี ปัจจุบันใช้ยานอวกาศโซยูส ทำหน้าที่เป็นเรือชูชีพ สำหรับลูกเรือที่ขึ้นปฏิบัติการทุกๆ 3 คน[65]

      ·         Interim Control Module และ ISS Propulsion Module ของสหรัฐอเมริกา เดิมตั้งใจจะนำขึ้นไปแทนที่การทำงานของ Zvezda ในกรณีที่การนำส่งล้มเหลว[66]

      ·         Universal Docking Module ของรัสเซีย สำหรับใช้เก็บโมดูลการวิจัยและยานอวกาศของรัสเซียที่ไม่ใช้งานแล้ว[67]

      ·         Science Power Platform ของรัสเซีย สำหรับรองรับเซกเมนต์การโคจรของรัสเซีย มีระบบจ่ายพลังงานของตัวเองจากแผงสุริยะบนโครงค้ำหลัก[67]

      ·         Russian Research Module สองชุดของรัสเซีย เดิมวางแผนไว้ว่าจะใช้สำหรับการวิจัยทางวิทยาศาสตร์[68]

      ชิ้นส่วนที่ไม่ได้ปรับความดัน[แก้]

      นักบินอวกาศ สตีเฟน เค. โรบินสัน ยึดปลายแขน Canadarm2 ระหว่างเที่ยวบินSTS-114

      นอกเหนือจากโมดูลปรับความดันแล้ว สถานีอวกาศนานาชาติยังติดตั้งอุปกรณ์ภายนอกเอาไว้เป็นจำนวนมาก โครงค้ำหลัก (ITS) ซึ่งเป็นโครงติดตั้งแผงรับแสงอาทิตย์หลักของสถานีและเครื่องกำเนิดความร้อน เป็นโครงสร้างภายนอกที่ใหญ่ที่สุด[19] ประกอบไปด้วยส่วนประกอบย่อย 10 ชิ้นต่อเข้าด้วยกันเป็นโครงค้ำขนาดยาว 108.5 เมตร (356 ฟุต) 

      อัลฟาแม็กเนติกสเปกโตรมิเตอร์ (AMS) ซึ่งเป็นอุปกรณ์ทดลองฟิสิกส์อนุภาค มีกำหนดจะส่งขึ้นโดยเที่ยวบิน STS-134 ในปี ค.ศ. 2010 จะถูกติดตั้งเข้ากับโครงด้านนอกของโครงค้ำหลัก อุปกรณ์ AMS นี้จะค้นหาสสารผิดประหลาดด้วยการตรวจวัดรังสีคอสมิก เพื่อทำการศึกษาค้นคว้าเกี่ยวกับกำเนิดของเอกภพ รวมถึงการค้นหาหลักฐานแสดงการมีอยู่ของสสารมืดและปฏิสสาร

      โครงค้ำหลักยังทำหน้าที่เป็นฐานสำหรับระบบควบคุมแขนกลจากทางไกล (Remote Manipulator System; RMS) ของสถานี รวมถึงระบบซ่อมบำรุงเคลื่อนที่ (Mobile Servicing System; MSS) ซึ่งประกอบด้วยระบบฐานCanadarm2, และ Special Purpose Dexterous Manipulator โดยมีรางติดตั้งอยู่บนส่วนต่างๆ ของโครงค้ำหลักเพื่อให้แขนกลสามารถเข้าถึงทุกซอกส่วนของสถานีอวกาศในบริเวณกำกับดูแลของสหรัฐอเมริกา ระบบซ่อมบำรุงเคลื่อนที่จะได้รับการติดตั้ง Orbiter Boom Sensor System ซึ่งมีกำหนดนำส่งโดยเที่ยวบิน STS-133 เพื่อเพิ่มความสามารถในการเข้าถึงพื้นที่ส่วนต่างๆ มากขึ้น

      ยังมีการติดตั้งระบบ RMS อีก 2 ระบบเข้าในการปรับแต่งสถานีครั้งสุดท้าย คือระบบแขนกลของยุโรปที่จะทำหน้าที่ให้บริการในส่วนวงโคจรของรัสเซีย นำส่งขึ้นพร้อมกับ โมดูลห้องทดลองเอนกประสงค์[72]กับระบบแขนกลของญี่ปุ่นที่จะทำหน้าที่ให้บริการระบบสนับสนุนภายนอกของ JEM[73] นำส่งขึ้นพร้อมกับโมดูลปรับความดัน JEM ในเที่ยวบิน STS-124 นอกจากนี้ยังมีเครนขนส่ง Strela ของรัสเซียอีก 2 ชิ้น ใช้สำหรับการเคลื่อนย้ายชิ้นส่วนต่างๆ และเป็นทางเดินอวกาศสำหรับมนุษย์อวกาศในบริเวณรอบนอกของบริเวณวงโคจรรัสเซีย

      สถานีที่เสร็จสมบูรณ์จะได้รับการติดตั้งอุปกรณ์ภายนอกชิ้นย่อมกว่าอีกหลายชิ้น เช่น External Stowage Platform (ESP) 3 ชุด นำส่งขึ้นโดยเที่ยวบิน STS-102, STS-114 และ STS-118 ใช้สำหรับเก็บชิ้นส่วนอะไหล่ของโครงภายนอกของสถานี,ExPRESS Logistics Carrier (ELC) 4 ชุดใช้สำหรับช่วยเหลือการทดลองที่ต้องกระทำในภาวะสุญญากาศ ใช้จ่ายกระแสไฟฟ้าที่จำเป็นรวมถึงการประมวลผลข้อมูลทดลองด้วยตนเอง มีกำหนดนำส่งขึ้นโดยเที่ยวบิน STS-129 ในเดือนพฤศจิกายน ค.ศ. 2009 เที่ยวบิน STS-134 ในเดือนกรกฎาคม ค.ศ. 2010 และเที่ยวบิน STS-133 ในเดือนกันยายน ค.ศ. 2010, อุปกรณ์สนับสนุน JEM แบบเปิดใช้เพื่อช่วยเหลือการทดลองที่กระทำในอวกาศที่เปิดโล่ง ทำหน้าที่เหมือน "ลานบ้าน" สำหรับโมดูลการทดลองของญี่ปุ่นทั้งหมด[76] เช่นกันกับโมดูลห้องทดลองโคลัมบัสของยุโรปที่เป็นสนามทดสอบสำหรับการทดลองในที่เปิดโล่ง เช่น European Technology Exposure Facility และ Atomic Clock Ensemble in Space.

      ระบบจ่ายพลังงาน[แก้]

      แผงรับแสงอาทิตย์ Zarya และ Zvezdaนอกเหนือจากแผงโซลาร์เซลล์ P6 ของสหรัฐฯ

      แหล่งพลังงานหลักของสถานีอวกาศนานาชาติคือดวงอาทิตย์ แผงรับแสงอาทิตย์จะแปลงพลังงานแสงให้เป็นพลังงานไฟฟ้า ก่อนที่จะมีการติดตั้งเที่ยวบินที่ A4 (เมื่อวันที่ 30 พฤศจิกายน ค.ศ. 2000) แหล่งพลังงานหลักของสถานีมาจากแผงโซลาร์เซลล์ของรัสเซียที่ติดอยู่กับส่วน Zarya และส่วน Zvezda ส่วนของรัสเซียใช้ไฟกระแสตรง 28 โวลต์ ส่วนที่เหลือของสถานีใช้ไฟฟ้าที่ได้จากโซลาเซลล์ของสหรัฐอเมริกาที่ติดกับโครงยึดโดยให้ไฟฟ้ากระแสตรงตั้งแต่ 130 ถึง 180 โวลต์ แผงโซลาร์เซลล์เหล่านี้เรียงตัวกันเป็นปีกสถานีสี่คู่ แต่ละคู่สามารถผลิตพลังงานไฟฟ้ากระแสตรงได้เกือบ 32.8 กิโลวัตต์

      พลังงานไฟฟ้าจะถูกทำให้คงที่อยู่ที่ระดับ 160 โวลต์และแปลงให้อยู่ในระดับที่ผู้ใช้ต้องการคือ 124 โวลต์ การกระจายไฟฟ้าแรงสูงเช่นนี้ทำให้สามารถใช้สายไฟฟ้าที่มีขนาดเล็กๆ ได้และช่วยลดน้ำหนักลง สถานีทั้งสองส่วนสามารถใช้พลังงานร่วมกันได้โดยอาศัยตัวแปลง การแบ่งปันพลังงานกันเช่นนี้มีความสำคัญมาก เพราะหลังจากที่เลิกใช้ Russian Science Power Platform แล้ว ส่วนของรัสเซียจะต้องใช้พลังงานที่ได้จากแผงโซลาร์เซลล์ของสหรัฐฯ

      ตัวสถานีนั้นมักจะไม่อยู่ในตำแหน่งที่สามารถรับแสงอาทิตย์โดยตรง ดังนั้นจึงมีความจำเป็นต้องพึ่งพาแบตเตอรี่นิกเกิล-ไฮโดรเจนในการจ่ายกระแสไฟฟ้าต่อเนื่องเป็นเวลา 35 นาทีสำหรับทุกรอบการโคจร 90 นาทีระหว่างช่วงที่มันถูกโลกบดบัง แบตเตอรี่จะชาร์จประจุใหม่เมื่อถึงจังหวะโคจรที่ได้รับแสงอาทิตย์ อายุใช้งานของแบตเตอรี่คือ 6.5 ปี จึงต้องมีการเปลี่ยนแบตเตอรี่หลายครั้งตลอดช่วงอายุใช้งาน 20 ปีของสถานีอวกาศ

      แผงสุริยะของสหรัฐอเมริกาจะหันหน้าเข้าสู่ดวงอาทิตย์เพื่อให้รับพลังงานได้มากที่สุด แต่ละแผงมีขนาดพื้นที่ประมาณ 375 ตารางเมตร และยาว 58 เมตร วงแหวนอัลฟาจะปรับแผงดวงอาทิตย์ให้หันหน้าเข้าสู่ดวงอาทิตย์ในการโคจรแต่ละรอบ ขณะที่วงแหวนบีตาจะปรับมุมของดวงอาทิตย์กับระนาบการโคจร นอกจากนี้ยังมีการใช้ Night Glider mode เพื่อลดแรงลากของยานที่เกิดจากบรรยากาศโลกชั้นบนโดยการหมุนแผงดวงอาทิตย์ให้ชี้ไปในทิศการเคลื่อนที่ของยาน

      การควบคุมวงโคจร[แก้]

      กราฟแสดงการเปลี่ยนแปลงระดับวงโคจรของสถานีอวกาศนานาชาติ ตั้งแต่เดือนพฤศจิกายน 1998 จนถึงเดือนมกราคม 2009

      สถานีอวกาศนานาชาติรักษาระดับวงโคจรที่มีลักษณะเกือบเป็นวงกลมที่ระดับความสูงเฉลี่ยต่ำสุดที่ 278 กิโลเมตร (173 ไมล์) และสูงสุดที่ 460 กิโลเมตร (286 ไมล์) เคลื่อนที่ด้วยความเร็วเฉลี่ย 27,724 กิโลเมตรต่อชั่วโมง (17,227 ไมล์ต่อชั่วโมง) ใช้เวลาโคจรประมาณ 15.7 รอบต่อวันระดับวงโคจรโดยปกติสูงสุดอยู่ที่ 425 กิโลเมตร (264 ไมล์) เพื่อให้สามารถทำงานร่วมกับยานโซยูสได้ สถานีอวกาศนานาชาติได้รับผลกระทบจากแรงลากในชั้นบรรยากาศทำให้สูญเสียระดับวงโคจรลงเรื่อยๆ จึงต้องทำการยกระดับวงโคจรขึ้นทุกปีปีละหลายๆ ครั้ง. การยกระดับวงโคจรนี้ทำโดยใช้เครื่องยนต์หลักสองชุดของสถานีจากโมดูลบริการ Zvezdaจากกระสวยอวกาศที่จอดเทียบท่า จากยานลำเลียง Progress หรือจากยานขนส่งอัตโนมัติ ATV ของ ESA ใช้เวลาประมาณ 2 รอบโคจร (3 ชั่วโมง) ในการยกระดับวงโคจรให้สูงขึ้น

      ในเดือนธันวาคม ค.ศ. 2008 นาซาลงนามในสัญญากับบริษัทจรวดแอดแอสตรา (Ad Astra Rocket Company) อันเป็นผลต่อการทดสอบ VASIMR ซึ่งเป็นเครื่อง plasma propulsion engineเทคโนโลยีนี้ช่วยให้การรักษาระดับวงโคจรของสถานีสามารถทำได้อย่างคุ้มค่าใช้จ่ายมากกว่าที่เป็นอยู่ในปัจจุบัน

      การตรวจสอบตำแหน่งของสถานีอวกาศทำโดยอาศัยระบบจีพีเอสของสหรัฐอเมริกา และระบบ GLONASS ของรัสเซีย โดยระบุตำแหน่ง (ทิศทาง) ของสถานีด้วยการวัดเทียบกับดวงอาทิตย์ ดาวฤกษ์ และเซ็นเซอร์ตรวจระนาบบนโมดูล ซเวซดาสถานีมีกลไกการควบคุมทิศทางอยู่สองกลไก โดยปกติยานจะใช้ไจโรสโคปหลายตัวช่วยรักษาทิศทาง ในโมดูลเดสทินี และโมดูลยูนิตี บนเสาค้ำ P ทางฝั่งเทียบท่า และโมดูลเพียร์ส บนฝั่งที่ใกล้โลก ในกรณีที่ไจโรสโคป "อิ่มตัว" แล้ว (เมื่อรับโมเมนตัมจนถึงระดับที่ไม่สามารถตรวจจับการเปลี่ยนแปลงอย่างรวดเร็ว) มันจะไม่สามารถควบคุมทิศทางของสถานีได้อีกในกรณีเช่นนี้ ระบบควบคุมทิศทางของรัสเซียจะทำงานแทนโดยอัตโนมัติโดยใช้ตัวปรับทิศทำการปรับทิศทางของยาน เพื่อให้ไจโรสโคปสามารถคลายโมเมนตัมและใช้งานได้ใหม่ เหตุการณ์นี้เคยเกิดขึ้นเพียงครั้งเดียวระหว่างช่วงปฏิบัติงานของชุด เอ็กซ์เพดิชั่น 10 ถ้ามีกระสวยอวกาศเข้าเทียบท่ากับสถานีอยู่ ก็สามารถใช้ช่วยในการรักษาทิศทางของสถานีได้ด้วย เคยมีการใช้วิธีการนี้ระหว่างเที่ยวบินที่ STS-117 เมื่อคราวที่นำเสาค้ำ S3/S4 ขึ้นไปติดตั้ง

      ระบบสื่อสารที่ใช้งานกับสถานีอวกาศ (ยกเว้นดาวเทียม Luch ไม่ได้ใช้งานแล้ว)

      การสื่อสารทางวิทยุช่วยเชื่อมต่อการส่งข้อมูลทางวิทยาศาสตร์และการวัดระยะไกลระหว่างสถานีอวกาศกับศูนย์ควบคุมภารกิจ การเชื่อมต่อวิทยุยังใช้ในกระบวนการพบกันระหว่างยานและการเข้าจอดเทียบท่าด้วย รวมถึงใช้ในการสื่อสารทั้งภาพและเสียงระหว่างลูกเรือ เจ้าหน้าที่ควบคุมการบิน และครอบครัว สถานีอวกาศนานาชาติจึงติดตั้งระบบสื่อสารทั้งภายในและภายนอกสำหรับใช้ในวัตถุประสงค์ต่างๆ แตกต่างกัน

      ส่วนโคจรของรัสเซียสื่อสารโดยตรงกับภาคพื้นดินผ่าน ไลรา ซึ่งเป็นเสาอากาศรับสัญญาณวิทยุติดตั้งอยู่บนโมดูลซเวซดา เสาอากาศ ไลรา ยังมีความสามารถใช้ระบบดาวเทียมถ่ายทอดข้อมูล Luch ด้วย ระบบนี้เคยใช้ในการสื่อสารกับ สถานีอวกาศมีร์ ต่อมาเสียหายจนซ่อมแซมไม่ได้ระหว่างคริสต์ทศวรรษ 1990 หลังจากนั้นก็ไม่ได้ใช้งานอีก อย่างไรก็ดี ดาวเทียม Luch ใหม่อีกสองตัวคือ Luch-5A และ Luch-5B ได้เตรียมการเพื่อนำส่งขึ้นในปี ค.ศ. 2011 เพื่อแก้ไขปรับปรุงความสามารถของระบบให้กลับมาใช้งานได้อีก ส่วนโคจรของสหรัฐฯ (USOS) ใช้ระบบวิทยุ 2 ระบบแยกจากกันซึ่งติดตั้งอยู่บนโครงค้ำ Z1 คือระบบเอสแบนด์ (ใช้สำหรับเสียง) และเคยูแบนด์ (ใช้กับเสียง ภาพเคลื่อนไหว และข้อมูล) การส่งสัญญาณนี้เชื่อมต่อผ่านระบบดาวเทียมติดตามและถ่ายทอดข้อมูล (Tracking and Data Relay Satellite; TDRSS) ของสหรัฐอเมริกาซึ่งอยู่ในวงโคจรค้างฟ้า ทำให้สามารถทำการสื่อสารแบบทันทีทันใดกับศูนย์ควบคุมภารกิจขององค์การนาซาในฮูสตันได้ ช่องทางส่งข้อมูลสำหรับ Canadarm2, ห้องทดลองโคลัมบัสของยุโรป และโมดูลคิโบของญี่ปุ่น จะถ่ายทอดผ่านระบบเอสแบนด์และเคยูแบนด์ แม้จะมีระบบดาวเทียมถ่ายทอดสัญญาณของยุโรปและระบบที่คล้ายคลึงกันของญี่ปุ่นสามารถทำหน้าที่แทน TDRSS ได้ก็ตาม สำหรับการสื่อสารระหว่างโมดูลต่างๆ ดำเนินการผ่านเครือข่ายดิจิตอลไร้สายภายใน

      ระบบวิทยุความถี่สูงมาก หรือ ยูเอชเอฟ จะใช้งานโดยนักบินอวกาศและนักสำรวจจักรวาลในปฏิบัติการภายนอกยาน โดยใช้งานจากยานอวกาศอื่นทั้งที่เข้าเทียบท่าหรือออกจากท่าของสถานีอวกาศ เช่น โซยูส โพรเกรส HTV ATV และกระสวยอวกาศ (ยกเว้นว่ากระสวยนั้นก็ใช้งานเอสแบนด์และเคยูแบนด์ผ่าน TDRSS เช่นกัน) เพื่อรับคำสั่งจากศูนย์ควบคุมภารกิจและจากลูกเรือของสถานีอวกาศนานาชาติ[26] ยานอวกาศอัตโนมัติจะติดตั้งอุปกรณ์สื่อสารของตัวมันเอง เช่น ATV จะมีเลเซอร์ติดตั้งบนตัวยาน หรืออุปกรณ์ที่ติดตั้งบน Zvezda เรียกชื่อว่า Proximity Communications Equipment เพื่อช่วยในการเข้าเทียบท่ากับสถานีอวกาศได้อย่างแม่นยำ

      ภาวะแรงโน้มถ่วงต่ำ

      ที่ระดับวงโคจรของสถานีอวกาศ สถานีได้รับแรงโน้มถ่วงประมาณ 88% ของแรงโน้มถ่วงที่ระดับน้ำทะเล สภาวะไร้น้ำหนักภายในยานเกิดขึ้นเนื่องจากการตกอย่างอิสระของสถานีอวกาศ ซึ่งเป็นไปตามหลักความสมมูล อย่างไรก็ตาม สภาพในยานยังคงเป็นสภาวะ"เกือบ"ไร้น้ำหนัก ไม่ใช่สภาวะไร้น้ำหนักอย่างสิ้นเชิง. เราเรียกสภาวะเช่นนี้ว่า ภาวะแรงโน้มถ่วงต่ำ (microgravity) ซึ่งเกิดจากแรงสี่แรงที่รบกวนดังนี้:

      ·         แรงลากที่เกิดจากชั้นบรรยากาศที่หลงเหลืออยู่

      ·         การสั่นที่เกิดจากระบบทางกลและลูกเรือบนสถานีอวกาศ

      ·         การปรับการโคจรโดยไจโรสโคปและเครื่องปรับทิศทาง

      ·         การแยกจากศูนย์กลางมวลที่แท้จริงของสถานี ชิ้นส่วนของสถานีอวกาศที่มิได้อยู่ในตำแหน่งศูนย์กลางมวลที่แท้จริงมีแนวโน้มจะเคลื่อนไปตามวงโคจรของตัวเอง ทว่าด้วยการเชื่อมต่อทางกายภาพทำให้การเคลื่อนที่เช่นนั้นเป็นไปไม่ได้ ดังนั้นชิ้นส่วนแต่ละชิ้นจึงมีความเร่งน้อยๆ เกิดจากแรงที่ตรึงมันเอาไว้กับสถานีขณะเคลื่อนไปในวงโคจรเราอาจเรียกแรงเช่นนี้ว่า แรงไทดัล ก็ได้

      ความสัมพันธ์ระหว่างส่วนประกอบต่างๆ ในระบบสนับสนุนการดำรงชีพและการควบคุมสภาวะแวดล้อมของสถานีอวกาศนานาชาติ (ECLSS)

      ระบบสนับสนุนการดำรงชีพและการควบคุมสภาวะแวดล้อม (Environmental Control and Life Support System; ECLSS) ของสถานีอวกาศนานาชาติทำหน้าที่หลายๆ อย่าง เช่น ควบคุมความดันอากาศ ระดับออกซิเจน ระบบจัดการน้ำเสีย ระบบตรวจจับเพลิงไหม้ ระบบดับเพลิง ระบบจ่ายน้ำ และอื่นๆ อีกมากมาย ส่วนที่สำคัญที่สุดในระบบนี้คือการควบคุมบรรยากาศภายในสถานีอวกาศ นอกจากนี้ระบบยังทำหน้าที่จัดการกับน้ำใช้และของเสียของลูกเรือ เช่นการรีไซเคิลน้ำที่ได้จากอ่าง ห้องอาบน้ำ โถปัสสาวะ และน้ำที่กลั่นตัวจากอากาศ ระบบ Elektron บนโมดูลซเวซดา และระบบที่คล้ายคลึงกันบนโมดูลเดสทินี ทำหน้าที่สร้างออกซิเจนไปทั่วสถานี ลูกเรือยังมีระบบอากาศสำรองจากออกซิเจนบรรจุขวดและถังบรรจุเครื่องผลิตออกซิเจน (Solid Fuel Oxygen Generation; SFOG)  การกำจัดคาร์บอนไดออกไซด์ในอากาศทำโดยระบบ Vozdukh ใน ซเวซดา ส่วนของเสียที่เป็นผลข้างเคียงจากเมตาบอลิซึมของมนุษย์ เช่น มีเทนและแอมโมเนีย จะถูกกำจัดออกไปโดยใช้เครื่องกรองจากถ่านกัมมันต์

      บรรยากาศบนสถานีอวกาศนานาชาตินั้นคล้ายคลึงกับบรรยากาศของโลกความดันอากาศปกติบนสถานีมีค่าเท่ากับ 101.3 kPa (14.7 psi ซึ่งเท่ากับค่าความดันบรรยากาศที่ระดับน้ำทะเลบนผิวโลก การสร้างบรรยากาศที่คล้ายคลึงกับโลกจะทำให้ลูกเรืออยู่ได้อย่างสบายกว่าและปลอดภัยกว่าการสร้างบรรยากาศที่มีแต่เพียงออกซิเจนบริสุทธิ์ ซึ่งมีความเสี่ยงสูงมากขึ้นที่จะเกิดเพลิงไหม้ดังเช่นที่เกิดกับลูกเรือของอพอลโล 1

      ผู้อ่านนิยมอ่านต่อ ดูทั้งหมด

      loading
      กำลังโหลด...

      ความคิดเห็น

      ×